2008: AMD Still Trailing
Intel is still moving along about the same as it has been making slow, incremental progress from the time that C2D was launched in 2006. It is clear that the increase in speed from Penryn doesn't match the early Intel hype but nevertheless any increase in speed is just that much more that it is faster than AMD. Likewise the tiny speed increases from 3.0 Ghz to 3.16 Ghz (quad core) and 3.4Ghz (dual core) are no doubt frustrating for Intel fans who would like more speed. On the other hand, AMD currently has nothing even close..
AMD will probably deliver 2.6 Ghz common chips in Q2. This chart at Computerbase claims AMD will release an FX chip in Q3. I'm not so sure about this because everything would suggest an FX of only 2.8 Ghz. This is probably the lowest clock that AMD could possibly get by with on the FX brand. There is no doubt that AMD needs a quad FX because people who bought FX in 2006 were promised upgrades and none have been forthcoming. Such a 2.8 Ghz FX would probably be clockable to 3.0 - 3.1 Ghz (with premium air cooling) based on what I've seen of the B3 stepping. This is probably the best AMD can do for now as I haven't seen anything that would suggest that B3 can deliver 2.8 Ghz as a common volume. This means that the poor man's version of FX, Black Edition will probably bump up to 2.6 Ghz as well. Intel seems to be somewhat behind in terms of 45nm but this hardly matters since their G0 stepping of 65nm works so well. But there is no doubt that AMD will be facing more 45nm Penryns in Q2. The shortages of chips have shielded AMD somewhat from increased presssure from Intel during Q4 and Q1 (although with Barcelona delayed server share may take another hit in Q1). However, as Q2 is the lowest volume of the year AMD will have to be aggressive to avoid a volume share drop during that quarter.
Probably, Fuad is closer to the truth of FX saying Q3:
The Deneb FX and Deneb cores, both 45nm quad-cores, are the first on the list. If they execute well we should see Deneb quad-core with shared L3 cache and 95W TDB in Q3. If not, the new hope will slip into Q4.
The timeline for FX being Q3 or maybe Q4 is not surprising at all. What is surprising is the idea that AMD's first new FX chip would be 45nm. If this is true then this would support the notion that AMD has suspended development of 65nm. But it would be surprising if 45nm could ramp that quickly.
The question then is what will happen in Q3 as AMD faces a steadily increasing volume of Penryn chips. The rumors suggest that AMD will not try to release a 65nm 2.8 Ghz Phenom. I'm not sure if this would then indicate that the 65nm process would hit a ceiling or whether this is to suggest that AMD will pursue these speeds with 45nm Shanghai. Another question is what 9850 might be. 9750 is supposed to be 2.4 Ghz while 9950 has been suggested to be 2.6 Ghz. So, would 9850 be 2.5Ghz perhaps? The topping out of the naming scheme does lend some credibility to the idea that AMD will suspend 65nm development and try to move to Shanghai as quickly as possible. Nevertheless, there is a big, big question of whether AMD could really deliver a 2.8 Ghz 45nm Shanghai in, say, Q3. Ever since the release of 130nm SOI, AMD's initial clock speeds on the new process have always been lower so there is a lot of doubt that AMD could reach 2.8Ghz on 45nm any sooner than Q4 2008. Nehalem will almost certainly be too small of volume in Q4 to be much of a factor. So, it looks like AMD's goal is to somehow get clock speed up and this seems even less likely with a mid year switch in process unless with 45nm AMD exceeds all past SOI efforts.
Early 2009 looks pretty good for Intel since it will not only have Penryn and Dunnington but increasing volumes of Nehalem. It still remains to be seen if Intel really will give up its lucrative chipset business on the desktop with Nehalem. It certainly seems that it wouldn't take much effort to modify an AMD HT based chipset to work with Intel's CSI interface. That would seem to remove a lot of Intel's current proprietary FSB advantage. On the other hand, with ATI out of the way this would seem to be the best time for Intel to face more competition in chipsets. Still, this does leave things a bit up in the air. If it becomes easier and cheaper to design chipsets as it surely would be if CSI is similar to HT then VIA might become more competitive. For AMD's part there seems little they can do in 2009 except try to ramp the clock speeds on Shanghai.
We have three other issues to talk about: one immediate and two longterm. The immediate issue is Hester's interview at Hexus where he mentions the slow clock speeds of K10. Basically, Hester says that the 65nm process is fine; it is a matter of adjusting some critical paths. I've seen this statement heckled by some who insist that you can't separate process from design. Curiously, these are the same people who also insisted that Intel's 90nm process was fine and that it was only a poor design with Prescott that was the problem. Anyway, this statement by Hester actually seems quite accurate to me. It was my impression that AMD had intended K10 to run at lower voltage which would have allowed higher clocks. This again seems to fit what we've seen with K10's limited by TDP. The reason for the higher voltage seems to be that the transistors don't quite switch fast enough and this causes some of the "critical paths" that Hester talked about to get out of synch. You could fix this at a low level by improving the transistors to get them back into spec with the design. Or, you could relax the timing on these critical paths which would get the design on spec with the transistors. Because 45nm is right around the corner it appears that AMD has decided to not expend more resources on 65nm improvement and will instead relax the timing. AMD's work on 45nm transistors will theoretically migrate down to 65nm, at least this is the theory of AMD's CTI (Continuous Transistor Improvement) program. However, we may now be entering a new era where improvements are so specialized that they may be unable to cross process boundaries as they used to and we may see AMD following Intel's lead. This would mean tighter design at the beginning of each process node and less reliance on later improvements.
The two long term issues concern the possibility of a New York FAB for AMD and the announcement on EUV. There are three questions about a NY FAB: Does AMD need it? Can they afford it? And, why NY instead of Dresden where FAB 30 and 36 are now? Need is most obvious because without a new FAB AMD's capacity will top out by mid to late 2010 unless the FAB 38 ramp is slower than expected. Affording is a big question but one that AMD can leave aside for now hoping that their cash situation will improve. The question of location is a curious one. One suggestion was that NY simply offered more incentives than Dresden but this by itself seems unlikely. In every case in the past Germany has shown itself more than willing to contribute money for AMD's FABs. So, the real reason for the NY location may have more to do with other factors. In fact, we even seemed to have some evidence of this from the EUV announcement.
"The AMD test chip first went through processing at AMD’s Fab 36 in Dresden, Germany, using 193 nm immersion lithography, the most advanced lithography tools in high volume production today. The test chip wafers were then shipped to IBM’s Research Facility at the College of Nanoscale Science and Engineering (CNSE) in Albany, New York where AMD, IBM and their partners used an ASML EUV lithography scanner installed in Albany through a partnership with ASML, IBM and CNSE, to pattern the first layer of metal interconnects between the transistors built in Germany."
Secondly, we need to remember that AMD only fell behind on process technology when it moved to 130nm in 2002. Prior to this AMD was doing pretty well. Although things seemed to improve after AMD's rocky transition to 130nm SOI AMD now seems to be falling behind again at 45nm. AMD used to operate its Submicron Development Center (SDC) in Sunnyvale, California. This facility was leading edge back in 1999. It surely is not lost on AMD that they have now surpassed IBM. Back in 2002 AMD only had a 200mm FAB while IBM had a more modern 300mm FAB as well as more capacity. AMD today has caught up in terms of FAB technology but passed IBM in terms of capacity. The big question for AMD has to be how badly IBM needs leading edge process technology and for how long. Robust server and mainframe chips need reliability more than top speed. Secondly, IBM has been steadily divesting hardware so one has to wonder when the processor division might become a target. Notice that in the above announcement the wafers had to be flown from FAB 36 in Dresden to New York. Given these facts I think it is possible that AMD wants to create another research facility at New York. I think this could serve both to tweak processes faster and optimize them better for AMD's needs as well as pick up any slack if research at IBM falls off. There has been no indication of this but it does seem plausible.
The recent EUV announcement is incomplete however. If we look at an IBM article on EUV in EETimes from February 23, 2007 we see that IBM very much wanted EUV for 22nm but figured that it wouldn't be ready in time for early development work.
The industry hopes EUV will make it into production sooner than latter, but the technology must reach certain milestones. ''I think the next 9 to 12 months are very critical to achieve this,'' said George Gomba, IBM distinguished engineer and director of lithography technology development at the company.
Twelve months from February 2007 would be now. So, what is missing from the EUV announcement is whether or not this recent test puts EUV on track for IBM for 22nm or whether it will have to wait for 16nm. A second question is why the test wafer was made at Dresden by AMD. If IBM had already tested its own wafers then why didn't it announce earlier? This could mean that AMD has decided to try to hit the 22nm node for EUV but that IBM has decided to wait until 16nm. If this is a more aggressive stance for AMD then it could mean that AMD will rely less on IBM for process technology for 22nm. This again would support the idea that AMD wants a new design center in NY. I think it is entirely plausible that AMD could surpass IBM to become the senior partner in process development over the next few years.